Source code for qnetvo.utilities

import pennylane as qml
import pennylane.numpy as qnp
import numpy as np
from pennylane import math
import itertools
import copy
import json


[docs] def unitary_matrix(circuit, num_wires, *circ_args, **circ_kwargs): """Constructs the unitary matrix representation of a quantum circuit in the computational basis. :param circuit: A quantum function. :type circuit: Function :param num_wires: The number of wires needed by ``circuit``. :type num_wires: Int :param circ_args: Passthrough arguments for ``circuit``. :type circ_args: Positional Arguments :param circ_kwargs: Passthrough keyword arguments for ``circuit``. :type circ_kwargs: keyword Arguments :returns: A unitary matrix representing the provided ``circuit``. :rtype: Numpy Array """ state_vec = state_vec_fn(circuit, num_wires) bitstrings = [np.array(bitstring) for bitstring in itertools.product([0, 1], repeat=num_wires)] unitary = [ state_vec(*circ_args, basis_state=bitstring, **circ_kwargs).numpy() for bitstring in bitstrings ] return np.array(unitary).T
[docs] def state_vec_fn(circuit, num_wires): """Constructs a function ``state_vec(*circ_args, basis_state=[0,...,0], **circ_kwargs)`` that returns the state vector representation of the output of ``circuit`` where the input to the circuit is specified in the computational basis by ``basis_state``. :param circuit: A quantum function. :type circuit: Function :param num_wires: The number of wires to evaluate ``circuit`` on. :type num_wires: Int :returns: A vector representing the pure quantum state output from ``circuit(*circ_args, **circ_kwargs)`` when the computational ``basis_state`` is provided as input. :rtype: np.array """ dev_wires = range(num_wires) dev = qml.device("default.qubit", wires=dev_wires) zero_state = np.array([0] * len(dev_wires)) @qml.qnode(dev) def state_vec(*circ_args, basis_state=zero_state, **circ_kwargs): qml.BasisState(basis_state, wires=dev_wires) circuit(*circ_args, **circ_kwargs) return qml.state() return state_vec
[docs] def density_mat_fn(circuit, num_wires): """Constructs a function that returns the density matrix of the specified ``circuit``. :param circuit: A quantum function. :type circuit: Function :param num_wires: The number of wires to evaluate ``circuit`` on. :type num_wires: Int :returns: A function ``density_mat(wires_out, *circ_args, basis_state=[0,...,0], **circ_kwargs)`` that returns the density matrix representing the quantum state on ``wires_out`` for the initialized ``basis_state`` where the quantum circuit is called as ``circuit(*circ_args, **circ_kwargs)``. :rtype: np.array """ dev_wires = range(num_wires) dev = qml.device("default.qubit", wires=dev_wires) zero_state = np.array([0] * len(dev_wires)) @qml.qnode(dev) def density_mat(wires_out, *circ_args, basis_state=zero_state, **circ_kwargs): qml.BasisState(basis_state, wires=dev_wires) circuit(*circ_args, **circ_kwargs) return qml.density_matrix(wires=wires_out) return density_mat
[docs] def write_optimization_json(opt_dict, filename): """Writes the optimization dictionary to a JSON file. :param opt_dict: The dictionary returned by a network optimization. :type opt_dict: dict :param filename: The name of the JSON file to be written. Note that ``.json`` extension is automatically added. :type filename: string :returns: ``None`` """ opt_dict_json = copy.deepcopy(opt_dict) opt_dict_json["opt_score"] = float(opt_dict_json["opt_score"]) opt_dict_json["scores"] = [float(score) for score in opt_dict_json["scores"]] opt_dict_json["opt_settings"] = [float(setting) for setting in opt_dict_json["opt_settings"]] opt_dict_json["settings_history"] = [ [float(setting) for setting in settings] for settings in opt_dict_json["settings_history"] ] with open(filename + ".json", "w") as file: file.write(json.dumps(opt_dict_json, indent=2))
[docs] def read_optimization_json(filepath): """Reads data from an optimization JSON created via ``write_optimization_json``. :param filepath: The path to the JSON file. Note this string must contain the ``.json`` extension. :type filepath: string :returns: The optimization dictionary read from the file. :rtype: dict """ with open(filepath) as file: opt_dict = json.load(file) return opt_dict
[docs] def mixed_base_num(n, base_digits): """Converts a base-10 number ``n`` into a mixed base number with digit values described by the ``base_digits`` array. :param n: A base-10 number :type n: int :param base_digits: A list of integers representing the largest value for each digit in the mixed base number :type base_digits: list[int] :returns: A list of integers representing the mixed base number. :rtype: list[int] """ mixed_base_digits = [] n_tmp = n for i in range(len(base_digits)): place = int(math.prod(base_digits[i + 1 :])) mixed_base_digits += [n_tmp // place] n_tmp = n_tmp % place return mixed_base_digits
def ragged_reshape(input_list, list_dims): """Takes a 1D list ``input_list`` and breaks it into smaller lists having lengths specified by the elements of ``list_dims``. :param input_list: The list to reshape. :type input_list: list :param list_dims: The length of each element in the output list :type list_dims: list[int] :returns: The original list reshaped as a list of lists where each element has length specified by ``list_dims``. :rtype: list[list] :raises ValueError: If `len(input_list) != sum(list_dims)` because list cannot be repartitioned. """ if math.sum(list_dims) != len(input_list): raise ValueError("`len(input_list)` must match the sum of `list_dims`.") output_list = [] start_id = 0 for i, num_nodes in enumerate(list_dims): output_list += [[]] end_id = start_id + num_nodes output_list[i] += input_list[start_id:end_id] start_id = end_id return output_list
[docs] def partial_transpose(dm, d1, d2): """ Computes the partial transpose of a density matrix with respect to the second subsystem. :param dm: The density matrix to be partially transposed. :type dm: np.array :param d1: The dimension of the first subsystem (e.g., :math:`2^m` where :math:`m` is the number of qubits in the first subsystem). :type d1: int :param d2: The dimension of the second subsystem (e.g., :math:`2^n` where :math:`n` is the number of qubits in the second subsystem). :type d2: int :returns: The partially transposed density matrix. :rtype: np.array :raises ValueError: If the product of ``d1`` and ``d2`` does not match the size of the density matrix. """ if d1 * d2 != dm.shape[0]: raise ValueError( "The dimensions of the subsystems do not match the size of the density matrix." ) bfm = np.empty((d2, d2), dtype=dm.dtype) trm = np.empty((d2, d2), dtype=dm.dtype) for i in range(d1): for j in range(d1): bfm = dm[i * d2 : (i + 1) * d2, j * d2 : (j + 1) * d2] np.copyto(trm, bfm.T) dm[i * d2 : (i + 1) * d2, j * d2 : (j + 1) * d2] = trm return dm