Source code for qnetvo.network_nodes

[docs] class NetworkNode: """A quantum network node. :param num_in: The number of discrete classical inputs that the node accepts. :type num_in: int :param num_out: The number of classical outputs for the node. :type num_out: int :param wires: The wires on which the node operates. :type wires: list[int] :param cc_wires_in: The classical communication wires input to the node. :type cc_wires_in: list[int] :param cc_wires_out: The classical communication wires to output measurement results on. :type cc_wires_out: list[int] :param ansatz_fn: A `PennyLane quantum circuit function <https://docs.pennylane.ai/en/stable/introduction/circuits.html>`_ called either as ``circuit(settings, wires)``, or as ``circuit(settings, wires, cc_wires)`` where ``settings`` is an *array[float]* of length ``num_settings`` and ``cc_wires`` contains the measurement results received from upstream nodes. :type ansatz_fn: function :param num_settings: The number of settings parameterizing the ``ansatz_fn`` circuit. :type num_settings: int :returns: An instance of the ``NetworkNode`` class. **Calling a Network Node's Ansatz Function:** Given an instantiated network node, ``node = NetworkNode(*args)``, its ansatz quantum circuit functtion can be called as ``node(settings, cc_wires)`` or, if ``node.cc_wires_in==[]``, the node can be called as ``node(settings)`` provided that ``cc_wires=[]``. **Attributes:** All inputs are stored as class attributes under the same name, *e.g.*, the ``num_in`` argument is stored as ``node.num_in``. """ def __init__( self, num_in=1, num_out=1, wires=[], cc_wires_in=[], cc_wires_out=[], ansatz_fn=None, num_settings=0, ): self.num_in = num_in self.num_out = num_out self.wires = wires self.cc_wires_in = cc_wires_in self.cc_wires_out = cc_wires_out self.ansatz_fn = ansatz_fn if ansatz_fn else self.default_ansatz_fn self.num_settings = num_settings def __call__(self, settings=[], cc_wires=[]): args = [settings, self.wires] if cc_wires: args += [cc_wires] return self.ansatz_fn(*args) def default_ansatz_fn(self, settings, wires, cc_wires=[]): pass
[docs] class NoiseNode(NetworkNode): """A network node that applies noise to its local qubit wires. :param wires: The wires on which the node operates. :type wires: list[int :param ansatz_fn: A `PennyLane quantum circuit function <https://docs.pennylane.ai/en/stable/introduction/circuits.html>` that takes the following form: .. code-block:: python def noise_ansatz(settings, wires): # apply noise operation qml.Depolarizing(0.5, wires=wires[0]) qml.AmplitudeDamping(0.5, wires=wires[1]) where ``settings=[]`` is unused because noise is considered to be static. :type ansatz_fn: function We model noise to be independent from classical inputs and upstream measurement results. Therefore, only the ``wires`` and ``ansatz_fn`` attributes can be set. All attributes are inherited from the :class:`qnetvo.NetworkNode` class. :returns: An instantiated ``NoiseNode`` class. """ def __init__(self, wires=[], ansatz_fn=None): super().__init__(wires=wires, ansatz_fn=ansatz_fn)
[docs] class ProcessingNode(NetworkNode): """A network node that operates upon its local qubit wires where the operation can be conditioned upon a classical input or upstream measurement results. :param num_in: The number of discrete classical inputs that the node accepts. :type num_in: int :param wires: The wires on which the node operates. :type wires: list[int] :param ansatz_fn: A `PennyLane quantum circuit function <https://docs.pennylane.ai/en/stable/introduction/circuits.html>`_ that takes the following form: .. code-block:: python def processing_ansatz(settings, wires): # apply processing operation qml.ArbitraryUnitary(settings[0:16], wires=wires[0:2]) where ``settings`` is an *array[float]* of length ``num_settings``. :type ansatz_fn: function :param num_settings: The number of settings parameterizing the ``ansatz_fn`` circuit. :type num_settings: int All attributes are inherited from the :class:`qnetvo.NetworkNode` class. :returns: An instantiated ``ProcessingNode`` class. """ def __init__(self, num_in=1, wires=[], ansatz_fn=None, num_settings=0): super().__init__( num_in=num_in, wires=wires, ansatz_fn=ansatz_fn, num_settings=num_settings, )
[docs] class PrepareNode(ProcessingNode): """A network node that initializes a state on its local qubit wires where the preparation can be conditioned on a classical input or upstream measurement results. :param num_in: The number of discrete classical inputs that the node accepts. :type num_in: int :param wires: The wires on which the node operates. :type wires: list[int] :param ansatz_fn: A `PennyLane quantum circuit function <https://docs.pennylane.ai/en/stable/introduction/circuits.html>`_ that takes the following form: .. code-block:: python def prepare_ansatz(settings, wires): # initalize quantum state from |0...0> qml.ArbitraryStatePreparation(settings[0:6], wires=wires[0:2]) where ``settings`` is an *array[float]* of length ``num_settings``. :type ansatz_fn: function :param num_settings: The number of settings parameterizing the ``ansatz_fn`` circuit. :type num_settings: int All attributes are inherited from the :class:`qnetvo.NetworkNode` class. :returns: An instantiated ``PrepareNode`` class. """ pass
[docs] class MeasureNode(NetworkNode): """A network node that measures its local qubit wires where the measurement can be conditioned on a classical input or upstream measurement results. :param num_in: The number of discrete classical inputs that the node accepts. :type num_in: int :param num_out: The number of classical outputs for the node. :type num_out: int :param wires: The wires on which the node operates. :type wires: list[int] :param ansatz_fn: A `PennyLane quantum circuit function <https://docs.pennylane.ai/en/stable/introduction/circuits.html>`_ that takes the following form: .. code-block:: python def measure_ansatz(settings, wires): # rotate measurement basis qml.Rot(*settings[0:3], wires=wires[0]) where ``settings`` is an *array[float]* of length ``num_settings``. Note that the measurement ansatz does not apply a measurement operation. Measurement operations are specified later when :class:`qnetvo.NetworkAnsatz` class is used to construct qnodes and cost functions. :type ansatz_fn: function :param num_settings: The number of settings parameterizing the ``ansatz_fn`` circuit. :type num_settings: int All attributes are inherited from the :class:`qnetvo.NetworkNode` class. In addition, the number of classical outputs are specified. :returns: An instantiated ``MeasureNode`` class. """ def __init__(self, num_in=1, num_out=1, wires=[], ansatz_fn=None, num_settings=0): super().__init__( num_in=num_in, num_out=num_out, wires=wires, ansatz_fn=ansatz_fn, num_settings=num_settings, )
[docs] class CCSenderNode(NetworkNode): """A network node that measures one or more of its local qubits and sends the measurement result(s) to one or more downstream :class:`qnetvo.CCReceiverNode` instances. :param num_in: The number of discrete classical inputs that the node accepts. :type num_in: int :param wires: The wires on which the node operates. :type wires: list[int] :param cc_wires_out: The classical communication wires to output measurement results on. :type cc_wires_out: list[int] :param ansatz_fn: A `PennyLane quantum circuit function <https://docs.pennylane.ai/en/stable/introduction/circuits.html>`_ that takes the following form: .. code-block:: python def cc_sender_ansatz(settings, wires): # apply quantum circuit operations qml.Rot(*settings[0:3], wires=wires[0]) # measure qubit to obtain classical communication bit cc_bit_out = qml.measure(wires[0]) # output list of measurement results return [cc_bit_out] where ``settings`` is an *array[float]* of length ``num_settings``. Note that for each wire specified in ``cc_wires_out``, there should be a corresponding ``cc_bit_out`` result obtained using `qml.measure`_. :type ansatz_fn: function :param num_settings: The number of settings parameterizing the ``ansatz_fn`` circuit. :type num_settings: int All attributes are inherited from the :class:`qnetvo.NetworkNode` class. .. _qml.measure: https://docs.pennylane.ai/en/stable/code/api/pennylane.measure.html :returns: An instantiated ``CCSenderNode`` class. """ def __init__(self, num_in=1, wires=[], cc_wires_out=[], ansatz_fn=None, num_settings=0): super().__init__( num_in=num_in, wires=wires, ansatz_fn=ansatz_fn, num_settings=num_settings, cc_wires_out=cc_wires_out, )
[docs] class CCReceiverNode(NetworkNode): """A network node that receives classical communication from an upstream :class:`qnetvo.CCSenderNode`. :param num_in: The number of discrete classical inputs that the node accepts. :type num_in: int :param wires: The wires on which the node operates. :type wires: list[int] :param cc_wires_in: The classical communication wires input to the node. :type cc_wires_in: list[int] :param ansatz_fn: A `PennyLane quantum circuit function <https://docs.pennylane.ai/en/stable/introduction/circuits.html>`_ that takes the following form: .. code-block:: python def cc_receive_ansatz(settings, wires, cc_wires): # apply quantum operations conditioned on classical communication qml.cond(cc_wires[0], qml.Rot)(*settings[0:3], wires=wires[0]) qml.cond(cc_wires[1], qml.Rot)(*settings[3:6], wires=wires[0]) where ``settings`` is an *array[float]* of length ``num_settings`` and ``cc_wires`` contains the measurement results received from upstream nodes. :type ansatz_fn: function :param num_settings: The number of settings parameterizing the ``ansatz_fn`` circuit. :type num_settings: int All attributes are inherited from the :class:`qnetvo.NetworkNode` class. Note that the classical inputs specified by ``num_in`` are distinct from the classical communication inputs passed through ``cc_wires``. That is, the classical inputs ``num_in`` are known before the network simulation is run whereas the classical communication in ``cc_wires`` are determined during the simulation. :returns: An instantiated ``CCReceiverNode`` class. """ def __init__( self, num_in=1, wires=[], cc_wires_in=[], ansatz_fn=None, num_settings=0, ): super().__init__( num_in=num_in, wires=wires, ansatz_fn=ansatz_fn, num_settings=num_settings, cc_wires_in=cc_wires_in, )