Source code for qnetvo.network_ansatz

import pennylane as qml
from pennylane import numpy as qnp
from pennylane import math

from .network_nodes import *


[docs] class NetworkAnsatz: """The ``NetworkAnsatz`` class describes a parameterized quantum network. :param layers: Each layer represents a chronological step in the network simulation. The nodes in each layer apply their operations in parallel where no two nodes can operate on the same wire. :type layers: list[list[:class:`qnetvo.NetworkNode`]] :param dev_kwargs: Keyword arguments for the `pennylane.device`_ function. :type dev_kwargs: *optional* dictionary .. _pennylane.device: https://pennylane.readthedocs.io/en/stable/code/api/pennylane.device.html :returns: An instantiated ``NetworkAnsatz``. There are some conventions that should be followed when defining network layers: 1. The first layer should contain all :class:`qnetvo.PrepareNode` s in the network. 2. The last layer should contain all :class:`qnetvo.MeasureNode` s in the network. 3. If classical communication is considered, then a :class:`qnetvo.CCSenderNode` must be used to obtain the communicated values in a layer preceding the layers where :class:`qnetvo.CCReceiverNode` s consume the classical communication. ATTRIBUTES: * **layers** - ``list[list[NetworkNode]]``, The input layers of network nodes. * **layers_wires** - ``list[qml.wires.Wires]``, The wires used for each layer. * **layers_cc_wires_in** - ``list[qml.wires.Wires]``, The classical communication wires input to each network layer. * **layers_cc_wires_out** - ``list[qml.wires.Wires]``, The classical communication wires output from each network layer. * **layers_num_settings** - ``list[int]``, The number of setting used in each layer. * **layers_total_num_in** - ``list[int]``, The total number of inputs for each layer. * **layers_node_num_in** - ``list[list[int]]``, The number of inputs for each node in the layer. * **layers_num_nodes** - ``list[int]``, The number of nodes in each layer. * **network_wires** - The list of wires used by the network ansatz. * **network_cc_wires** - The list of classical communication wires in the network. * **num_cc_wires** - The number of classical communication wires. * **dev_kwargs** - *mutable*, the keyword args to pass to the `pennylane.device`_ function. If no ``dev_kwargs`` are provided, a ``"default.qubit"`` is constructed for noiseless networks. * **fn** (*function*) - A quantum function implementing the quantum network ansatz. * **parameter_partitions** (*List[List[List[Tuple]]]*) - A ragged array containing tuples that specify how to partition a 1D array of network settings into the subset of settings passed to the qnode simulating the network. See :meth:`get_network_parameter_partitions` for details. :raises ValueError: If the ``wires`` are not unique across all nodes in an ansatz layer or the ``cc_wires_out`` are not unique across all layers. :raises ValueError: If ``cc_wires_in`` are used by a layer preceding the classical values output onto ``cc_wires_out``. """ def __init__(self, *layers, dev_kwargs=None): self.layers = layers # layers attributes self.layers_wires = [self.collect_wires([node.wires for node in layer]) for layer in layers] self.layers_cc_wires_in = [ self.collect_wires([node.cc_wires_in for node in layer], check_unique=False) for layer in layers ] self.layers_cc_wires_out = [ self.collect_wires([node.cc_wires_out for node in layer]) for layer in layers ] self.check_cc_causal_structure(self.layers_cc_wires_in, self.layers_cc_wires_out) self.layers_num_settings = [ math.sum([node.num_settings for node in layer]) for layer in layers ] self.layers_total_num_in = [math.prod([node.num_in for node in layer]) for layer in layers] self.layers_node_num_in = [[node.num_in for node in layer] for layer in self.layers] self.layers_num_nodes = [len(layer) for layer in self.layers] # network attributes self.network_wires = qml.wires.Wires.all_wires(self.layers_wires) self.network_cc_wires = self.collect_wires( [node.cc_wires_out for layer in layers for node in layer] ) self.num_cc_wires = len(self.network_cc_wires) # device attributes default_dev_name = "default.qubit" self.dev_kwargs = dev_kwargs or {"name": default_dev_name} self.dev_kwargs["wires"] = self.network_wires # ansatz function attributes self.fn = self.ansatz_circuit_fn() self.parameter_partitions = self.get_network_parameter_partitions() def __call__(self, settings=[]): self.fn(settings) def ansatz_circuit_fn(self): layer_fns = [self.circuit_layer_fn(layer_nodes) for layer_nodes in self.layers] def ansatz_circuit(settings=[]): cc_wires = [None] * self.num_cc_wires start_id = 0 for i, layer_fn in enumerate(layer_fns): end_id = start_id + self.layers_num_settings[i] layer_settings = settings[start_id:end_id] layer_fn(layer_settings, cc_wires) start_id = end_id return ansatz_circuit
[docs] @staticmethod def circuit_layer_fn(layer_nodes): """Constructs a quantum function for an ansatz layer of provided network nodes. :param layer_nodes: A list of nodes in a network layer. :type layer_nodes: list[:class:`qnetvo.NetworkNode`] :returns: A quantum function evaluated as ``circuit_layer(settings)`` where ``settings`` is an array constructed via the ``layer_settings`` function. :rtype: function """ def circuit_layer(settings, cc_wires): start_id = 0 for node in layer_nodes: end_id = start_id + node.num_settings node_settings = settings[start_id:end_id] node_cc_wires = [cc_wires[i] for i in node.cc_wires_in] if isinstance(node, CCSenderNode): cc_out = node(node_settings, node_cc_wires) for i in range(len(cc_out)): cc_wires[node.cc_wires_out[i]] = cc_out[i] else: node(node_settings, node_cc_wires) start_id = end_id return circuit_layer
[docs] def get_network_parameter_partitions(self): """ A nested list containing tuples that specify how to partition a 1D array of network settings into the subset of settings passed to the qnode simulating the network. Each tuple ``(start_id, stop_id)`` is indexed by ``layer_id``, ``node_id``, and classical ``input_id`` as ``parameter_partitions[layer_id][node_id][input_id] => (start_id, stop_id)``. The ``start_id`` and ``stop_id`` describe the slice ``network_settings[start_id:stop_id]``. """ parameter_partitions = [] start_id = 0 for i, layer in enumerate(self.layers): parameter_partitions += [[]] for j, node in enumerate(layer): parameter_partitions[i] += [[]] for _ in range(node.num_in): stop_id = start_id + node.num_settings parameter_partitions[i][j] += [(start_id, stop_id)] start_id = stop_id return parameter_partitions
[docs] @staticmethod def collect_wires(wires_lists, check_unique=True): """A helper method for the ``NetworkAnsatz`` class which collects and aggregates the wires from a set of collection of network nodes (``prepare_nodes`` or ``measure_nodes``). :param network_nodes: A list consisting of either ``PrepareNode``'s or ``MeasureNode``'s. :type network_nodes: list[PrepareNode or MeasureNode] :raises ValueError: If the same wire is used in two different nodes in ``network_nodes``. """ wires_objs = list(map(qml.wires.Wires, wires_lists)) all_wires = qml.wires.Wires.all_wires(wires_objs) if check_unique: unique_wires = qml.wires.Wires.unique_wires(wires_objs) # two nodes cannot prepare a state on the same wire if not all_wires.tolist() == unique_wires.tolist(): raise ValueError( "One or more wires are not unique. Each node must contain unique wires." ) return all_wires
[docs] @staticmethod def check_cc_causal_structure(cc_wires_in_layers, cc_wires_out_layers): """Verifies that the classical communication is causal. Note that ``cc_wires_out`` describes the classical communication senders while ``cc_wires_in`` describe classical communication receivers. All network ansatzes must have a causal structure where nodes output their classical communication in layers that precede the nodes that use that classical communication. :params cc_wires_in_layers: The classical communication input wires, ``cc_wires_in``, considered for each layer. :type cc_wires_in_layers: list[qml.wires.Wires] :params cc_wires_out_layers: The classical communication output wires, ``cc_wires_out``, considered for each layer. :type cc_wires_out_layers: list[qml.wires.Wires] :returns: ``True`` if the :raises ValueError: If ``cc_wires_in`` are used by a layer preceding the classical values output onto ``cc_wires_out``. """ num_layers = len(cc_wires_in_layers) for i in range(num_layers): measured_cc_wires = ( qml.wires.Wires.all_wires([measured_cc_wires, cc_wires_out_layers[i - 1]]) if (i - 1) >= 0 else qml.wires.Wires([]) ) if not measured_cc_wires.contains_wires(cc_wires_in_layers[i]): raise ValueError( "The `cc_wires_in` of layer " + str(i) + " do not have corresponding `cc_wires_out` in a preceding layer." ) return True
[docs] def layer_settings(self, network_settings, layer_id, layer_inputs): """Constructs the list of settings for a circuit layer in the network ansatz. :param network_settings: A list containing the circuit settings for each node in the network. :type network_settings: List[Float] :param layer_id: The id for the targeted layer. :type layer_id: Int :param layer_inputs: A list of the classical inputs supplied to each network node. :type layer_inputs: List[Int] :returns: A 1D array of settings for the circuit layer. :rtype: List[float] """ settings = [] for j, node_input in enumerate(layer_inputs): start_id, stop_id = self.parameter_partitions[layer_id][j][node_input] settings += [network_settings[k] for k in range(start_id, stop_id)] return settings
[docs] def qnode_settings(self, network_settings, network_inputs): """Constructs a list of settings to pass to the qnode executing the network ansatz. :param network_settings: The settings for the network ansatz scenario. :type network_settings: list[list[np.ndarray]] :param network_inputs: The classical inputs passed to each network node. :type network_inputs: List[List[int]] :returns: A list of settings to pass to the constructed qnode. :rtype: np.array """ settings = [] for i, layer_inputs in enumerate(network_inputs): settings += self.layer_settings(network_settings, i, layer_inputs) return qml.math.stack(settings)
[docs] def expand_qnode_settings(self, qn_settings, network_inputs): """Constructs network settings from qnode settings and the network inputs. This implements the reverse mapping implemented in :meth:`qnetvo.NetworkAnsatz.qnode_settings`. Since there are fewer qnode settings than network settings, empty elements in the returned list are set to zero. :param qn_settings: Settings to pass to the network qnode. :type qn_settings: array[float] :param network_inputs: The considered classical network inputs. :type network_inputs: list[int] :returns: The network settings :rtype: array[float] """ expanded_settings = self.zero_network_settings() qn_start_id = 0 for i, layer_inputs in enumerate(network_inputs): for j, node_input in enumerate(layer_inputs): node = self.layers[i][j] qn_stop_id = qn_start_id + node.num_settings start_id, stop_id = self.parameter_partitions[i][j][node_input] expanded_settings[start_id:stop_id] = qn_settings[qn_start_id:qn_stop_id] qn_start_id = qn_stop_id return qml.math.stack(expanded_settings)
[docs] def rand_network_settings(self, fixed_setting_ids=[], fixed_settings=[]): """Creates an array of randomized differentiable settings for the network ansatz. If fixed settings are specified, then they are marked as ``requires_grad=False`` and not differentatiated during optimzation. :param fixed_setting_ids: The ids of settings that are held constant during optimization. Also requires `fixed_settings` to be provided. :type fixed_setting_ids: *optional* List[Int] :param fixed_settings: The constant values for fixed settings. :type fixed_settings: *optional* List[Float] :returns: A 1D list of ``qnp.tensor`` scalar values having ``requires_grad=True``. :rtype: List[Float] """ num_settings = self.parameter_partitions[-1][-1][-1][-1] rand_settings = [ qnp.array(2 * qnp.pi * qnp.random.rand() - qnp.pi) for _ in range(num_settings) ] if len(fixed_setting_ids) > 0 and len(fixed_settings) > 0: for i, id in enumerate(fixed_setting_ids): rand_settings[id] = qnp.array(fixed_settings[i], requires_grad=False) return rand_settings
[docs] def tf_rand_network_settings(self, fixed_setting_ids=[], fixed_settings=[]): """Creates a randomized settings array for the network ansatz using TensorFlow tensor types. :param fixed_setting_ids: The ids of settings that are held constant during optimization. Also requires `fixed_settings` to be provided. :type fixed_setting_ids: *optional* List[Int] :param fixed_settings: The constant values for fixed settings. :type fixed_settings: *optional* List[Float] :returns: A 1D list of ``tf.Variable`` and ``tf.constant`` scalar values. :rtype: List[tf.Tensor] """ from .lazy_tensorflow_import import tensorflow as tf np_settings = self.rand_network_settings(fixed_setting_ids, fixed_settings) return [ tf.Variable(setting) if qml.math.requires_grad(setting) else tf.constant(setting) for setting in np_settings ]
[docs] def zero_network_settings(self): """Creates a settings array for the network ansatz that consists of zeros. :returns: A 1D list of ``np.tensor`` scalar values having ``requires_grad=True``. :rtype: List[Float] """ num_settings = self.parameter_partitions[-1][-1][-1][-1] return [qnp.array(0, requires_grad=True) for _ in range(num_settings)]