Source code for qnetvo.gradient_descent

import pennylane as qml
from datetime import datetime
import time


[docs] def gradient_descent( cost, init_settings, num_steps=150, step_size=0.1, sample_width=25, grad_fn=None, verbose=True, interface="autograd", optimizer=None, optimizer_kwargs={}, ): """Performs a numerical gradient descent optimization on the provided ``cost`` function. The optimization is seeded with (random) ``init_settings`` which are then varied to minimze the cost. :param cost: The cost function to be minimized with gradient descent. :type cost: function :param init_settings: A valid input for the cost function. :type init_settings: array-like[float] :param num_steps: The number of gradient descent iterations, defaults to ``150``. :type num_steps: int, optional :param step_size: The learning rate for the gradient descent, defaults to ``0.1``. :type step_size: float, optional :param sample_width: The number of steps between "sampled" costs which are printed/returned to user, defaults to ``25``. :type sample_width: int, optional :param grad_fn: A custom gradient function, default to ``None`` which applies the standard numerical gradient. :type grad_fn: function, optional :param verbose: If ``True``, progress is printed during the optimization, defaults to ``True``. :type verbose: bool, optional :param interface: Specifies the optimizer software either ``"autograd"`` or ``"tf"`` (TensorFlow). :type interface: string, default ``"autograd``" :param optimizer: Specifies the PennyLane optimizer to use. Default ``qml.GradientDescentOptimizer``. Set to ``"adam"`` to use the ``qml.AdamOptimizer``, note that ``interface="autograd"`` must be set. :type optimizer: String :param optimizer_kwargs: Keyword arguments to pass to the specified optimizer. :type optimizer_kwargs: Dict :return: Data regarding the gradient descent optimization. :rtype: dictionary, contains the following keys: * **opt_score** (*float*) - The maximized reward ``-(min_cost)``. * **opt_settings** (*array-like[float]*) - The setting for which the optimum is achieved. * **scores** (*array[float]*) - The list of rewards sampled during the gradient descent. * **samples** (*array[int]*) - A list containing the iteration for each sample. * **settings_history** (*array[array-like]*) - A list of all settings found for each intermediate step of gradient descent * **datetime** (*string*) - The date and time in UTC when the optimization occurred. * **step_times** (*list[float]*) - The time elapsed during each sampled optimization step. * **step_size** (*float*) - The learning rate of the optimization. .. warning:: The ``gradient_descent`` function minimizes the cost function, however, the general use case within this project is to maximize the violation of a Bell inequality. The maximization is assumed within ``gradient_descent`` and is applied by multiplying the cost by (-1). This is an abuse of function naming and will be resolved in a future commit by having ``gradient_descent`` return the minimized cost rather than the maximized reward. The resolution is to wrap ``gradient_descent`` with a ``gradient_ascent`` function which maximizes a reward function equivalent to ``-(cost)``. :raises ValueError: If the ``interface`` is not supported. """ if interface == "autograd": if optimizer == "adam": opt = qml.AdamOptimizer(stepsize=step_size, **optimizer_kwargs) else: opt = qml.GradientDescentOptimizer(stepsize=step_size) elif interface == "tf": from .lazy_tensorflow_import import tensorflow as tf opt = tf.keras.optimizers.SGD(learning_rate=step_size) else: raise ValueError('Interface "' + interface + '" is not supported.') settings = init_settings scores = [] samples = [] step_times = [] settings_history = [init_settings] start_datetime = datetime.utcnow() elapsed = 0 # performing gradient descent for i in range(num_steps): if i % sample_width == 0: score = -(cost(*settings)) scores.append(score) samples.append(i) if verbose: print("iteration : ", i, ", score : ", score) start = time.time() if interface == "autograd": settings = opt.step(cost, *settings, grad_fn=grad_fn) if not (isinstance(settings, list)): settings = [settings] elif interface == "tf": with tf.GradientTape() as tape: tf_cost = cost(*settings) gradients = tape.gradient(tf_cost, settings) opt.apply_gradients(zip(gradients, settings)) elapsed = time.time() - start if i % sample_width == 0: step_times.append(elapsed) if verbose: print("elapsed time : ", elapsed) settings_history.append(settings) opt_score = -(cost(*settings)) step_times.append(elapsed) scores.append(opt_score) samples.append(num_steps) return { "datetime": start_datetime.strftime("%Y-%m-%dT%H:%M:%SZ"), "opt_score": opt_score, "opt_settings": settings, "scores": scores, "samples": samples, "settings_history": settings_history, "step_times": step_times, "step_size": step_size, }