Source code for qnetvo.cost.nlocal_star_bell_inequality

import pennylane as qml
from pennylane import math
from pennylane import numpy as np
from ..qnodes import global_parity_expval_qnode
from scipy.linalg import pinvh


[docs] def star_I22_fn(network_ansatz, parallel=False, nthreads=4, **qnode_kwargs): """Constructs a network-specific ``I22(network_settings)`` function that evaluates the :math:`I_{22,n}` quantity for the :math:`n`-local star network. The :math:`I_{22,n}` quantity is formally expressed as .. math:: I_{22,n} = \\frac{1}{2^n}\\sum_{x_1,\\dots,x_n}\\langle A_{x_1}\\dots A_{x_n}B_0\\rangle, where :math:`x_i\\in\\{0,1\\}` and :math:`A_{x_i}` and :math:`B_{x_{n+1}}` are dichotomic observables. :param network_ansatz: The :math:`n`-local star network ansatz. :type network_ansatz: qnet.NetworkAnsatz :param parallel: If ``True`` qnodes will be evaluated in separate threads. This is valuable for execution on remote simulator and hardware devices. Default value: ``False``. :type parallel: *optional* Bool :param nthreads: Specifies the number of threads used when ``parallel=True``. :type nthreads: Int :param qnode_kwargs: keyword args passed through to the QNode constructor. :type qnode_kwargs: *optional* dictionary :returns: A function callable as ``I22(*network_settings)`` that evaluates the :math:`I_{22,n}` quantity. :rtype: function """ n = len(network_ansatz.layers[0]) static_prep_inputs = [[0] * len(layer_nodes) for layer_nodes in network_ansatz.layers[0:-1]] network_input_x_vals = [ static_prep_inputs + [[int(bit) for bit in np.binary_repr(x, width=n) + "0"]] for x in range(2**n) ] if parallel: from ..lazy_dask_import import dask star_qnodes = [ global_parity_expval_qnode(network_ansatz, **qnode_kwargs) for i in range(nthreads) ] else: star_qnode = global_parity_expval_qnode(network_ansatz, **qnode_kwargs) def I22(*network_settings): I22_x_settings = [ network_ansatz.qnode_settings(network_settings, network_inputs) for network_inputs in network_input_x_vals ] if parallel: I22_results = [] num_batches = int((2**n) / nthreads) for i in range(num_batches + 1): start_id = i * nthreads end_id = start_id + nthreads if i < num_batches else 2**n I22_delayed_results = [ dask.delayed(star_qnodes[i])(settings) for i, settings in enumerate(I22_x_settings[start_id:end_id]) ] I22_results = math.concatenate( [I22_results, dask.compute(*I22_delayed_results, scheduler="threads")] ) else: I22_results = math.stack([star_qnode(settings) for settings in I22_x_settings]) return math.sum(I22_results) / (2**n) return I22
[docs] def star_J22_fn(network_ansatz, parallel=False, nthreads=4, **qnode_kwargs): """Constructs a network-specific ``J22(network_settings)`` function that evaluates the :math:`J_{22,n}` quantity for the :math:`n`-local star network. The :math:`J_{22,n}` quantity is formally expressed as .. math:: J_{22,n} = \\frac{1}{2^n}\\sum_{x_1,\\dots,x_n}(-1)^{\\sum_i x_i}\\langle A_{x_1}\\dots A _{x_n}B_1\\rangle, where :math:`x_i\\in\\{0,1\\}` and :math:`A_{x_i}` and :math:`B_{x_{n+1}}` are dichotomic observables. :param network_ansatz: The :math:`n`-local star network ansatz. :type network_ansatz: qnet.NetworkAnsatz :param parallel: If ``True`` qnodes will be evaluated in separate threads. This is valuable for execution on remote simulator and hardware devices. Default value: ``False``. :type parallel: *optional* Bool :param nthreads: Specifies the number of threads used when ``parallel=True``. :type nthreads: Int :param qnode_kwargs: keyword args passed through to the QNode constructor. :type qnode_kwargs: *optional* dictionary :returns: A function callable as ``J22(*network_settings)`` that evaluates the :math:`J_{22,n}` quantity for the given ``network_settings``. :rtype: function """ n = len(network_ansatz.layers[0]) static_prep_inputs = [[0] * len(layer_nodes) for layer_nodes in network_ansatz.layers[0:-1]] network_input_x_vals = [ static_prep_inputs + [[int(bit) for bit in np.binary_repr(x, width=n) + "1"]] for x in range(2**n) ] if parallel: from ..lazy_dask_import import dask star_qnodes = [ global_parity_expval_qnode(network_ansatz, **qnode_kwargs) for i in range(nthreads) ] else: star_qnode = global_parity_expval_qnode(network_ansatz, **qnode_kwargs) def J22(*network_settings): J22_x_settings = [ network_ansatz.qnode_settings(network_settings, network_inputs) for network_inputs in network_input_x_vals ] if parallel: J22_expvals = [] num_batches = int((2**n) / nthreads) for i in range(num_batches + 1): start_id = i * nthreads end_id = start_id + nthreads if i < num_batches else 2**n J22_delayed_results = [ dask.delayed(star_qnodes[i])(settings) for i, settings in enumerate(J22_x_settings[start_id:end_id]) ] J22_expvals = math.concatenate( [J22_expvals, dask.compute(*J22_delayed_results, scheduler="threads")] ) else: J22_expvals = math.stack([star_qnode(settings) for settings in J22_x_settings]) J22_scalars = math.stack( [(-1) ** (math.sum(input_vals[1][0:n])) for input_vals in network_input_x_vals] ) return math.sum(J22_scalars * J22_expvals) / (2**n) return J22
[docs] def nlocal_star_22_cost_fn(network_ansatz, parallel=False, nthreads=4, **qnode_kwargs): """A network-specific constructor for the :math:`n`-local star Bell inequality for scenarios when all measurement devices in the star network have 2 inputs and 2 outputs. The :math:`n`-local star network Bell inequality is expressed as .. math:: |I_{22,n}|^{1/n} + |J_{22,n}|^{1/n} \\leq 1 where the quantities :math:`I_{22,n}` and :math:`J_{22,n}` are evaluated using functions constructed by the :meth:`qnetvo.star_I22_fn` and :meth:`qnetvo.star_J22_fn` methods respectively. The classical bound is found to be 1, but quantum systems can score as high as :math:`\\sqrt{2}`. :param network_ansatz: The :math:`n`-local star network ansatz. :type network_ansatz: qnet.NetworkAnsatz :param parallel: If ``True`` qnodes will be evaluated in separate threads. This is valuable for execution on remote simulator and hardware devices. Default value: ``False``. :type parallel: *optional* Bool :param nthreads: Specifies the number of threads used when ``parallel=True``. :type nthreads: Int :param qnode_kwargs: keyword args passed through to the QNode constructor. :type qnode_kwargs: *optional* dictionary :returns: A function callable as ``nlocal_star_22_cost(*network_settings)`` that evaluates the cost as :math:`-|I_{22,n}|^{1/n} - |J_{22,n}|^{1/n}`. :rtype: function """ n = len(network_ansatz.layers[0]) I22 = star_I22_fn(network_ansatz, parallel=parallel, nthreads=nthreads, **qnode_kwargs) J22 = star_J22_fn(network_ansatz, parallel=parallel, nthreads=nthreads, **qnode_kwargs) def cost(*network_settings): I22_score = I22(*network_settings) J22_score = J22(*network_settings) return -(np.power(math.abs(I22_score), 1 / n) + np.power(math.abs(J22_score), 1 / n)) return cost
[docs] def parallel_nlocal_star_grad_fn(network_ansatz, nthreads=4, natural_grad=False, **qnode_kwargs): """Constructs a parallelizeable gradient function ``grad_fn`` for the :math:`n`-local star cost function. The gradient of the :meth:`nlocal_star_22_cost_fn` is expressed as, .. math:: -\\nabla_{\\vec{\\theta}}|I_{22,n}|^{1/n} - \\nabla_{\\vec{\\theta}}|J_{22,n}|^{1/n}, where the gradient differentiates with respect to the network settings :math:`\\vec{\\theta}`. The parallelization is achieved through multithreading and intended to improve the efficiency of remote qnode execution. :param network_ansatz: The ansatz describing the :math:`n`-local chain network. :type network_ansatz: NetworkAnsatz :param nthreads: Specifies the number of threads used when ``parallel=True``. :type nthreads: Int :param natural_grad: If ``True``, the natural gradient is evaluated by scaling the gradient by the inverse of the metric tensor. :type natural_grad: *optional* Bool :param qnode_kwargs: A keyword argument passthrough to qnode construction. :type qnode_kwargs: *optional* dict :returns: A parallelized (multithreaded) gradient function ``nlocal_star_grad(network_settings)``. :rtype: Function .. warning:: Parallel gradient computation is flaky on PennyLane v0.28+. Intermittent failures may occur. """ from ..lazy_dask_import import dask n = len(network_ansatz.layers[0]) star_qnodes = [ global_parity_expval_qnode(network_ansatz, **qnode_kwargs) for i in range(nthreads) ] I22_x_vals = [[int(bit) for bit in np.binary_repr(x, width=n) + "0"] for x in range(2**n)] J22_x_vals = [[int(bit) for bit in np.binary_repr(x, width=n) + "1"] for x in range(2**n)] static_prep_inputs = [[0] * len(layer_nodes) for layer_nodes in network_ansatz.layers[0:-1]] I22 = star_I22_fn(network_ansatz, parallel=True, nthreads=nthreads, **qnode_kwargs) J22 = star_J22_fn(network_ansatz, parallel=True, nthreads=nthreads, **qnode_kwargs) # gradient helper functions def _g(qnode, settings): return qml.grad(qnode)(settings) def _ng(qnode, settings): metric_inv = pinvh(qml.metric_tensor(qnode, approx="block-diag")(settings)) return metric_inv @ _g(qnode, settings) _grad = _ng if natural_grad else _g def nlocal_star_grad(*network_settings): I22_score = I22(*network_settings) J22_score = J22(*network_settings) I22_x_settings = [ network_ansatz.qnode_settings(network_settings, static_prep_inputs + [meas_inputs]) for meas_inputs in I22_x_vals ] J22_x_settings = [ network_ansatz.qnode_settings(network_settings, static_prep_inputs + [meas_inputs]) for meas_inputs in J22_x_vals ] grad_I22_results = [] grad_J22_results = [] num_batches = int((2**n) / nthreads) for i in range(num_batches + 1): start_id = i * nthreads end_id = start_id + nthreads if i < num_batches else 2**n grad_I22_delayed_results = [ dask.delayed(_grad)(star_qnodes[i], settings) for i, settings in enumerate(I22_x_settings[start_id:end_id]) ] grad_I22_results.extend(dask.compute(*grad_I22_delayed_results, scheduler="threads")) grad_J22_delayed_results = [ dask.delayed(_grad)(star_qnodes[i], settings) for i, settings in enumerate(J22_x_settings[start_id:end_id]) ] grad_J22_results.extend(dask.compute(*grad_J22_delayed_results, scheduler="threads")) settings_grad = network_ansatz.zero_network_settings() I22_scalar = ( -(1 / n) * np.power(math.abs(I22_score), (1 - n) / n) * math.sign(I22_score) * (1 / (2**n)) ) J22_scalar = ( -(1 / n) * np.power(math.abs(J22_score), (1 - n) / n) * math.sign(J22_score) * (1 / (2**n)) ) for i in range(2**n): I22_inputs = I22_x_vals[i] J22_inputs = J22_x_vals[i] J22_sign = (-1) ** math.sum(J22_inputs[0:n]) settings_grad += I22_scalar * network_ansatz.expand_qnode_settings( grad_I22_results[i], [[0] * n, I22_inputs] ) settings_grad += ( J22_sign * J22_scalar * network_ansatz.expand_qnode_settings(grad_J22_results[i], [[0] * n, J22_inputs]) ) return settings_grad return nlocal_star_grad