Source code for qnetvo.cost.mutual_info

import pennylane as qml
from pennylane import math
from pennylane import numpy as np
from ..qnodes import joint_probs_qnode
from ..information import shannon_entropy
from ..utilities import mixed_base_num, ragged_reshape


[docs] def mutual_info_cost_fn(ansatz, priors, postmap=np.array([]), **qnode_kwargs): """Constructs an ansatz-specific mutual information cost function. The mutual information quantifies the information shared by two distributions :math:`X` and :math:`Y`. This entropic quantity is expressed as .. math:: I(Y;X) = H(Y) + H(X) - H(XY) where :math:`H(X) = -\\sum_{i}P(X_i)\\log_2(P(X_i))` is the Shannon entropy (see :meth:`qnetvo.shannon_entropy`). The mutual information can be used to quantify the amount of communication between a sender and receiver. In a quantum prepare and measure network, we evaluate the mutual information between the collections of preparation and measurement nodes. :param ansatz: The ansatz circuit on which the mutual information is evaluated. :type ansatz: NetworkAnsatz :param priors: A list of prior distributions for the inputs of each preparation node. :type priors: list[np.array] :param postmap: The post-processing matrix mapping the bitstring output from the quantum device into the measurement node outputs. :type postmap: np.array :param qnode_kwargs: Keyword arguments passed to the execute qnodes. :type qnode_kwargs: dictionary :returns: A cost function ``mutual_info_cost(*network_settings)`` parameterized by the ansatz-specific scenario settings. :rtype: Function """ net_num_in = math.prod(ansatz.layers_total_num_in) num_inputs_list = math.concatenate(ansatz.layers_node_num_in).tolist() node_input_ids = [ ragged_reshape(mixed_base_num(i, num_inputs_list), ansatz.layers_num_nodes) for i in range(net_num_in) ] net_num_out = math.prod([meas_node.num_out for meas_node in ansatz.layers[-1]]) if len(postmap) == 0: postmap = np.eye(2 ** len(ansatz.layers_wires[-1])) px_vec = 1 for i in range(len(priors)): px_vec = np.kron(px_vec, priors[i]) Hx = shannon_entropy(px_vec) probs_qnode = joint_probs_qnode(ansatz, **qnode_kwargs) def cost(*network_settings): Hxy = 0 py_vec = np.zeros(net_num_out) for i, input_id_set in enumerate(node_input_ids): settings = ansatz.qnode_settings(network_settings, input_id_set) p_net = postmap @ probs_qnode(settings) Hxy += shannon_entropy(p_net * px_vec[i]) py_vec += p_net * px_vec[i] Hy = shannon_entropy(py_vec) mutual_info = Hx + Hy - Hxy return -(mutual_info) return cost
[docs] def shannon_entropy_cost_fn(ansatz, **qnode_kwargs): """Constructs an ansatz-specific Shannon entropy cost function The Shannon entropy characterizes the amount of randomness, or similarly, the amount of information is present in a random variable. Formally, let :math:`X` be a discrete random variable, then the Shannon entropy is defined by the expression: .. math:: H(X) = -\\sum_{x} P(x) \\log_{2} P(x) In the case of a quantum network, the Shannon entropy is defined on the measurement outcome of the network ansatz. :param ansatz: The ansatz circuit on which the Shannon entropy is evalutated. :type ansatz: NetworkAnsatz :param qnode_kwargs: Keyword arguments passed to the execute qnodes. :type qnode_kwargs: dictionary :returns: A cost function ``shannon_entropy(*network_settings)`` parameterized by the ansatz-specific network settings. :rtype: Function """ static_inputs = [[0] * num_nodes for num_nodes in ansatz.layers_num_nodes] probs_qnode = joint_probs_qnode(ansatz, **qnode_kwargs) def cost(*network_settings): settings = ansatz.qnode_settings(network_settings, static_inputs) probs_vec = probs_qnode(settings) return shannon_entropy(probs_vec) return cost