Source code for qnetvo.cost.magic_squares_game

from pennylane import math
from ..qnodes import joint_probs_qnode


[docs] def magic_squares_game_cost_fn(network_ansatz, **qnode_kwargs): """Constructs a cost function that maximizes the winning probability for the magic squares game. :param network_ansatz: A ``NetworkAnsatz`` class specifying the quantum network simulation. :type network_ansatz: NetworkAnsatz :return: A cost function evaluated as ``cost(*network_settings)`` where the ``network_settings`` are obtained from the provided ``network_ansatz`` class. :rtype: Function """ probs_qnode = joint_probs_qnode(network_ansatz, **qnode_kwargs) static_prep_inputs = [[0] * len(layer_nodes) for layer_nodes in network_ansatz.layers[0:-1]] def cost(*network_settings): winning_probability = 0 for x in [0, 1, 2]: for y in [0, 1, 2]: settings = network_ansatz.qnode_settings( network_settings, static_prep_inputs + [[x, y]] ) probs = probs_qnode(settings) for i in range(16): bit_string = [int(x) for x in math.binary_repr(i, 4)] A_parity_bit = 0 if (bit_string[0] + bit_string[1]) % 2 == 0 else 1 B_parity_bit = 1 if (bit_string[2] + bit_string[3]) % 2 == 0 else 0 A_bits = bit_string[0:2] + [A_parity_bit] B_bits = bit_string[2:] + [B_parity_bit] if A_bits[y] == B_bits[x]: winning_probability += probs[i] return -(winning_probability / 9) return cost