Source code for qnetvo.cost.linear_inequalities

from pennylane import math
from pennylane import numpy as np
from ..qnodes import joint_probs_qnode, global_parity_expval_qnode
from ..utilities import mixed_base_num, ragged_reshape


[docs] def linear_probs_cost_fn(network_ansatz, game, postmap=np.array([]), qnode_kwargs={}): """Constructs an ansatz-specific cost that is a linear function of the network probablities. The cost function is encoded into a ``game`` matrix whose coefficients scale conditional probabilities for the network. The cost is derived from the score which is evaluated as, .. math:: \\langle\\mathbf{G},\\mathbf{P}\\rangle = \\sum_{\\{\\vec{x}_i\\}_i,\\vec{a}} G_{a|\\{x_i\\}_i} P(a|\\{x_i\\}), where :math:`\\mathbf{P}` is a behavior (see :meth:`qnetvo.behavior_fn`) and :math:`\\{\\vec{x}_i\\}_i` specifies the collection of inputs for each layer as indexed by :math:`i`. A post-processing map :math:`\\mathbf{L}` may optionally be applied as :math:`\\mathbf{L}\\mathbf{P}_{Net}` where .. math:: \\mathbf{L} = \\sum_{z',z}P(z'|z)|z'\\rangle\\langle z|. In the above expression, :math:`z'` is a new output drawn from a new alphabet. :param network_ansatz: The network to which the cost function is applied. :type network_ansatz: ``NetworkAnsatz`` class :param game: A matrix with dimensions ``A x (\\prod_i X_i)`` for :type game: np.arrray :param postmap: A post-processing map applied to the bitstrings output from the quantum circuit. The ``postmap`` matrix is column stochastic, that is, each column sums to one and contains only positive values. :type postmap: *optional* np.ndarray :returns: A cost function evaluated as ``cost(*network_settings)``. :rtype: function :raises ValueError: If the number of outputs from the qnode do not match the the number of rows in the specified ``game``. """ probs_qnode = joint_probs_qnode(network_ansatz, **qnode_kwargs) net_num_in = math.prod(network_ansatz.layers_total_num_in) num_inputs_list = math.concatenate(network_ansatz.layers_node_num_in).tolist() node_input_ids = [ ragged_reshape(mixed_base_num(i, num_inputs_list), network_ansatz.layers_num_nodes) for i in range(net_num_in) ] raw_net_num_out = 2 ** len(network_ansatz.layers_wires[-1]) game_outputs, game_inputs = game.shape if game_inputs != net_num_in: raise ValueError("The `game` matrix must have " + str(net_num_in) + " columns.") has_postmap = len(postmap) != 0 if not (has_postmap): if game_outputs != raw_net_num_out: raise ValueError( "The `game` matrix must either have " + str(raw_net_num_out) + " rows, or a `postmap` is needed." ) else: if postmap.shape[0] != game_outputs: raise ValueError("The `postmap` must have " + str(game_outputs) + " rows.") elif postmap.shape[1] != raw_net_num_out: raise ValueError("The `postmap` must have " + str(raw_net_num_out) + " columns.") def cost(*network_settings): score = 0 for i, input_id_set in enumerate(node_input_ids): settings = network_ansatz.qnode_settings(network_settings, input_id_set) raw_probs = probs_qnode(settings) probs = postmap @ raw_probs if has_postmap else raw_probs score += math.sum(game[:, i] * probs) return -(score) return cost