Source code for qnetvo.cost.chsh_inequality

import pennylane as qml
from pennylane import math
from ..qnodes import global_parity_expval_qnode
from scipy.linalg import pinvh


[docs] def chsh_inequality_cost_fn(network_ansatz, parallel=False, **qnode_kwargs): """Constructs a cost function for maximizing the score against the CHSH Bell inequality. This inequality is defined as .. math:: I_{CHSH} = \\sum_{x,y\\in\\{0,1\\}}(-1)^{x\\cdot y}\\langle A_x B_y \\rangle where :math:`\\langle A_x B_y \\rangle = \\sum_{a,b\\in\\{-1,1\\}} a\\cdot b P(a,b|x,y)` is the two-body correlator between dichotomic observables :math:`A_x` and :math:`B_y`. :param network_ansatz: A ``NetworkAnsatz`` class specifying the quantum network simulation. :type network_ansatz: NetworkAnsatz :param parallel: If ``True``, remote qnode executions are made in parallel web requests. :type parallel: *optional* bool :param qnode_kwargs: Keyword arguments used only for ``pennylane.qnode`` construction. :type qnode_kwargs: *optional* dict :returns: A cost function evaluated as ``cost(*network_settings)`` where the ``network_settings`` are obtained from the provided ``network_ansatz`` class. """ static_prep_inputs = [[0] * len(layer_nodes) for layer_nodes in network_ansatz.layers[0:-1]] network_inputs = [static_prep_inputs + [xy] for xy in [[0, 0], [0, 1], [1, 0], [1, 1]]] if parallel: from ..lazy_dask_import import dask chsh_qnodes = [global_parity_expval_qnode(network_ansatz, **qnode_kwargs) for i in range(4)] else: chsh_qnode = global_parity_expval_qnode(network_ansatz, **qnode_kwargs) def chsh_cost(*network_settings): xy_settings = [ network_ansatz.qnode_settings(network_settings, network_input) for network_input in network_inputs ] if parallel: delayed_results = [ dask.delayed(chsh_qnodes[i])(settings) for i, settings in enumerate(xy_settings) ] results = math.stack(dask.compute(*delayed_results, scheduler="threads")) else: results = math.stack([chsh_qnode(settings) for settings in xy_settings]) return -(math.sum(results * math.stack([1, 1, 1, -1]))) return chsh_cost
[docs] def parallel_chsh_grad_fn(network_ansatz, natural_grad=False, **qnode_kwargs): """Constructs a parallelizeable gradient function ``grad_fn`` for the CHSH cost. The parallelization is achieved through multithreading and intended to improve the efficiency of remote qnode execution. The natural gradient .. math:: \\nabla_{ng}I_{CHSH}(\\vec{\\theta}):= g^{-1}(\\vec{\\theta})\\nabla I_{CHSH}(\\vec{\\theta}) scales the euclidean gradient :math:`\\nabla` by the pseudo-inverse of the Fubini-Study metric tensor :math:`g^{-1}(\\vec{\\theta})`. The natural gradient of the :math:`-I_{CHSH}(\\vec{\\theta})` cost function is evaluated directly as .. math:: -\\nabla_{ng}I_{CHSH}(\\vec{\\theta}) &= -\\nabla_{ng}\\sum_{x,y=0}^1 (-1)^{x \\wedge y}\\langle A_x B_y\\rangle(\\vec{\\theta}_{x,y}) \\\\ &= -\\sum_{x,y=0}^1 (-1)^{x \\wedge y}\\nabla_{ng}\\langle A_x B_y \\rangle(\\vec{\\theta_{x,y}}) \\\\ &= -\\sum_{x,y=0}^1(-1)^{x \\wedge y}g^{-1}(\\vec{\\theta}_{x,y})\\nabla\\langle A_x B_y \\rangle(\\vec{\\theta}_{x,y}) where :math:`\\langle A_x B_y \\rangle(\\vec{\\theta}_{x,y})` is the expectation value of observables :math:`A_x` and :math:`B_y` parameterized by the settings :math:`\\vec{\\theta}_{x,y}`. :param network_ansatz: The ansatz describing the network for which the CHSH inequality considered. :type network_ansatz: NetworkAnsatz :param natural_grad: If ``True``, then the natural gradient is evaluated. Default ``False``. :type natural_grad: *optional* Bool :param qnode_kwargs: A keyword argument passthrough to qnode construction. :type qnode_kwargs: *optional* dict :returns: A parallelized (multithreaded) gradient function ``grad_fn(*network_settings)``. :rtype: function .. warning:: Parallel gradient computation is flaky on PennyLane v0.28+. Intermittent failures may occur. """ from ..lazy_dask_import import dask static_prep_inputs = [[0] * len(layer_nodes) for layer_nodes in network_ansatz.layers[0:-1]] network_inputs = [static_prep_inputs + [xy] for xy in [[0, 0], [0, 1], [1, 0], [1, 1]]] qnodes = [] for _ in network_inputs: chsh_qnode = global_parity_expval_qnode(network_ansatz, **qnode_kwargs) qnodes.append(chsh_qnode) def _grad_fn(settings, qnode): return qml.grad(qnode)(settings) def _nat_grad_fn(settings, qnode): ginv = pinvh(qml.metric_tensor(qnode, approx="block-diag")(settings)) return ginv @ _grad_fn(settings, qnode) grad_fn = _nat_grad_fn if natural_grad else _grad_fn def parallel_chsh_grad(*network_settings): xy_settings = [ network_ansatz.qnode_settings(network_settings, input) for input in network_inputs ] delayed_grads = [ dask.delayed(grad_fn)(settings, qnodes[i]) for i, settings in enumerate(xy_settings) ] grads = dask.compute(*delayed_grads, scheduler="threads") grad = network_ansatz.zero_network_settings() for grad_id, inputs in enumerate(network_inputs): x = inputs[1][0] y = inputs[1][1] scalar = -1 * (-1) ** (x * y) grad += scalar * network_ansatz.expand_qnode_settings(grads[grad_id], inputs) return grad return parallel_chsh_grad